Original writings by Avi Sion on the theory and practice of inductive and deductive LOGIC  

The Logician   Philosophy, Epistemology, Phenomenology, Aetiology, Psychology, Meditation

Home Future Logic Phenomenology Judaic Logic Buddhist Illogic Logic of Causation Volition & Allied Ruminations Meditations Reflections A Fortiori Logic Other Writings General Sitemap Search Facility BOOKSHOP

www.TheLogician.net                                Avi Sion - all rights reserved

Home
Return

The Logician

Avi Sion

All rights reserved

Search

General Sitemap

Collected Abstracts

Contact

BOOKSHOP

 

 

 

FUTURE LOGIC

Avi Sion, 1990 (Rev. ed. 1996) All rights reserved.

 

APPENDIX 1:

On Factorial Analysis (Open Systems Analysis).

 

            The table below is an appendix to Chapter 53 (in particular, Section 5).  

            It shows the factorial analysis of all 195 gross formulas (listed in the column labeled FORMULAS), in terms of the 63 factors (columns F1-F63) in the 'open system' of mixed (natural and temporal) modality.  

            Due to the size of the table, it is here split into three segments.

  • The first segment concerns factors F1-F21; 

  • the second,  factors F22-F42;

  • the third,  factors F43-F63.

Thus, to see the factors allowed for by any gross formula, it is necessary to look along the row corresponding to it in all three segments.  

            The factors of any gross formula are signaled by a '1' in the cell concerned (where row and column cross); if a cell is blank, it means that the factor heading the column is not a possible outcome of the gross formula heading the row.  

            The gross formulas are first sorted into elements and compounds. Then the 20 elementary (plural) propositions and the remaining 175 compound formulas (consisting of two or more elements) are, respectively, sorted according to the number of factors they each have (indicated in the column labeled NF).  

            The factors of the 20 elements are already known (see ch. 52). The factors of the remaining 175 gross formulas (compounds), follow automatically from them. We need only do the following:  

1.    Split the compound into its component elements (which number two, three or four, as the case may be).

2.    Look and see which, if any, of these elements have the factor concerned.

3.    If all have it, the compound in question also has it; otherwise, not.  

            (For example, the compound AcInOp has factor F8, because its three component elements Ac, In and Op, have only this one factor F8 in common.)  

            The value of this table is, as we have seen (ch. 54-59), to guide us in generalization and particularization, by indicating successive inductive preferences. In some cases (the eleven cases with a single factor, to be specific), it even indicates deductive inferences.

 

APPENDIX TO CHAPTER 53 - FIRST SEGMENT - FACTORS F1-F21.

NF = Number of Factors.

NF

FORMULAS

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21
Elements:
1 An 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 En 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 Ac 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3 Ec 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
7 A 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
7 E 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0
15 At 1 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1
15 Et 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1
31 Ap 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1
31 Ep 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1
32 In 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0
32 On 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0
48 Ic 1 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0
48 Oc 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 0
56 I 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1
56 O 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1
60 It 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
60 Ot 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
62 Ip 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
62 Op 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Compounds:
1 AcInOp 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 AcEp 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 AIcEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 AEt 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 AtIEtO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 AtE 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 ApItEOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 ApEc 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 IpEcOn 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2 AcIn 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 AcOp 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 AInOt 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
2 AIcEp 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
2 AEpOt 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
2 AtIcEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
2 AtIEt 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2 AtEtO 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2 ApIEtOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
2 ApItE 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
2 ApEOc 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
2 ItEOn 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
2 IpEc 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2 EcOn 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
3 AInOp 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
3 AIcOt 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
3 AEp 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
3 AtIcEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
3 AtIEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
3 AtEt 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
3 ApIEtO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
3 ApItEtOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
3 ApE 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
3 ItEOc 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
3 IpEOn 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
4 AIn 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
4 AOt 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
4 AtInO 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
4 AtIcEp 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
4 AtEpO 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
4 ApIcEpOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
4 ApIEt 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
4 ApEtOc 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
4 IEtOn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
4 ItE 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
4 EOn 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
5 AIcOp 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
5 AtIEpOt 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1
5 ApItEtO 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
5 IpEOc 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0
6 AIc 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
6 AOp 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
6 AtInOt 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
6 AtIcO 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
6 AtIEp 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1
6 AtEpOt 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1
6 ApIcEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
6 ApIEpOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
6 ApItEt 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
6 ApEtO 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
6 IEtOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
6 ItEtOn 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
6 IpE 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0
6 EOc 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0
7 AtInOp 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0
7 AtIO 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1
7 AtEp 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1
7 ApIcEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0
7 ApItEpOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
7 ApEt 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
7 IEtO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1
7 IpEtOn 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0
8 AtIn 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0
8 AtO 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1
8 ApInOc 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
8 ApIcEp 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0
8 ApEpOc 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
8 IcEpOn 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
8 IEt 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1
8 EtOn 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0
9 AtIcOt 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0
9 ApIEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1
9 ItEtOc 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0
11 AtIcOp 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0
11 AtIOt 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1
11 ApIEpOt 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1
11 ApItEpO 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1
11 ItEtO 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1
11 IpEtOc 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0
12 AtIc 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0
12 AtOt 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1
12 ApInO 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
12 ApIcOc 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
12 ApIEp 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1
12 ApEpO 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1
12 IcEpOc 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
12 IEpOn 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
12 ItEt 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1
12 EtOc 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0
13 AtIOp 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1
13 ApItEpOt 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
13 IpEtO 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1
14 AtI 1 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1
14 AtOp 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1
14 ApInOt 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0
14 ApIOc 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
14 ApItEp 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
14 ApEpOt 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
14 IcEpO 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0
14 ItEpOn 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0
14 IpEt 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1
14 EtO 0 1 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1
15 ApInOp 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0
15 ApItOc 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0
15 ApEp 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
15 IcEpOt 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0
15 IpEpOn 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0
16 ApIn 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0
16 ApOc 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0
16 InOn 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 IcEp 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0
16 EpOn 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0
18 ApIcO 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0
18 IEpOc 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0
21 ApIcOt 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 0
21 ApIO 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1
21 IEpO 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1
21 ItEpOc 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0
23 ApIcOp 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0
23 ApItO 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1
23 IEpOt 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1
23 IpEpOc 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0
24 ApIc 1 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0
24 ApO 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1
24 InOc 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
24 IcOn 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
24 IEp 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1
24 EpOc 0 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0
25 ApIOt 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 0 1 1 1
25 ItEpO 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 0 1 1 1 1
27 ApIOp 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1
27 ApItOt 0 0 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1
27 ItEpOt 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1
27 IpEpO 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 1 1
28 ApI 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1
28 ApOt 0 0 0 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1
28 InO 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0
28 IOn 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
28 ItEp 0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1
28 EpO 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 1 1
29 ApItOp 0 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1
29 IpEpOt 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1
30 ApIt 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1
30 ApOp 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1
30 InOt 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0
30 ItOn 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0
30 IpEp 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1
30 EpOt 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1
31 InOp 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0
31 IpOn 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0
36 IcOc 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0
42 IcO 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 0
42 IOc 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0
45 IcOt 0 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 0 0
45 ItOc 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0
47 IcOp 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0
47 IpOc 0 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 0
49 IO 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1
53 IOt 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1
53 ItO 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1
55 IOp 0 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1
55 IpO 0 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1
57 ItOt 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
59 ItOp 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
59 IpOt 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
61 IpOp 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CONTINUED IN NEXT SEGMENT

 

APPENDIX TO CHAPTER 53 - SECOND SEGMENT - FACTORS F22-F42.

NF = Number of Factors.

NF

FORMULAS

F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32 F33 F34 F35 F36 F37 F38 F39 F40 F41 F42
Elements:
1 An 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 En 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 Ac 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 Ec 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 A 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 E 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
15 At 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0
15 Et 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0
31 Ap 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0
31 Ep 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0
32 In 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1
32 On 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1
48 Ic 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1
48 Oc 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1
56 I 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
56 O 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
60 It 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
60 Ot 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
62 Ip 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
62 Op 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Compounds:
1 AcInOp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 AcEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 AIcEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 AEt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 AtIEtO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 AtE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 ApItEOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 ApEc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 IpEcOn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 AcIn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 AcOp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 AInOt 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 AIcEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 AEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 AtIcEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
2 AtIEt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 AtEtO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 ApIEtOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
2 ApItE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 ApEOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 ItEOn 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 IpEc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 EcOn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 AInOp 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 AIcOt 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 AEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 AtIcEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
3 AtIEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
3 AtEt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 ApIEtO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3 ApItEtOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3 ApE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 ItEOc 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3 IpEOn 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
4 AIn 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 AOt 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 AtInO 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
4 AtIcEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
4 AtEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
4 ApIcEpOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
4 ApIEt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
4 ApEtOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
4 IEtOn 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
4 ItE 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
4 EOn 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
5 AIcOp 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 AtIEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
5 ApItEtO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
5 IpEOc 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
6 AIc 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 AOp 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 AtInOt 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0
6 AtIcO 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0
6 AtIEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
6 AtEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
6 ApIcEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
6 ApIEpOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0
6 ApItEt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
6 ApEtO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
6 IEtOc 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
6 ItEtOn 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0
6 IpE 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
6 EOc 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
7 AtInOp 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0
7 AtIO 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0
7 AtEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
7 ApIcEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
7 ApItEpOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0
7 ApEt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
7 IEtO 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
7 IpEtOn 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0
8 AtIn 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0
8 AtO 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0
8 ApInOc 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
8 ApIcEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
8 ApEpOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0
8 IcEpOn 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
8 IEt 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0
8 EtOn 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0
9 AtIcOt 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0
9 ApIEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
9 ItEtOc 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0
11 AtIcOp 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0
11 AtIOt 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0
11 ApIEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
11 ApItEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
11 ItEtO 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0
11 IpEtOc 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0
12 AtIc 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0
12 AtOt 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0
12 ApInO 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0
12 ApIcOc 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0
12 ApIEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
12 ApEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
12 IcEpOc 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0
12 IEpOn 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0
12 ItEt 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0
12 EtOc 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0
13 AtIOp 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0
13 ApItEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
13 IpEtO 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0
14 AtI 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0
14 AtOp 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0
14 ApInOt 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0
14 ApIOc 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0
14 ApItEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
14 ApEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
14 IcEpO 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0
14 ItEpOn 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0
14 IpEt 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0
14 EtO 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0
15 ApInOp 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0
15 ApItOc 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0
15 ApEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
15 IcEpOt 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0
15 IpEpOn 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0
16 ApIn 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0
16 ApOc 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0
16 InOn 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
16 IcEp 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0
16 EpOn 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0
18 ApIcO 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 0
18 IEpOc 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0
21 ApIcOt 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0
21 ApIO 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0
21 IEpO 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0
21 ItEpOc 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0
23 ApIcOp 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0
23 ApItO 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0
23 IEpOt 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0
23 IpEpOc 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0
24 ApIc 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0
24 ApO 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0
24 InOc 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1
24 IcOn 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
24 IEp 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0
24 EpOc 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0
25 ApIOt 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0
25 ItEpO 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0
27 ApIOp 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0
27 ApItOt 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0
27 ItEpOt 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0
27 IpEpO 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0
28 ApI 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0
28 ApOt 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0
28 InO 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1
28 IOn 1 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1
28 ItEp 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0
28 EpO 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0
29 ApItOp 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0
29 IpEpOt 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0
30 ApIt 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0
30 ApOp 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0
30 InOt 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1
30 ItOn 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1
30 IpEp 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0
30 EpOt 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0
31 InOp 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1
31 IpOn 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1
36 IcOc 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1
42 IcO 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1 1 1 0 1
42 IOc 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1
45 IcOt 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1
45 ItOc 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1
47 IcOp 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1
47 IpOc 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1
49 IO 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
53 IOt 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
53 ItO 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
55 IOp 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
55 IpO 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
57 ItOt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
59 ItOp 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
59 IpOt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
61 IpOp 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CONTINUED IN NEXT SEGMENT

 

APPENDIX TO CHAPTER 53 - THIRD SEGMENT - FACTORS F43-F63.

NF = Number of Factors.

NF

FORMULAS

F43 F44 F45 F46 F47 F48 F49 F50 F51 F52 F53 F54 F55 F56 F57 F58 F59 F60 F61 F62 F63
Elements:
1 An 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 En 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 Ac 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 Ec 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 At 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
15 Et 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
31 Ap 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 0
31 Ep 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0
32 In 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1
32 On 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 1
48 Ic 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
48 Oc 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
56 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
56 O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
60 It 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
60 Ot 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
62 Ip 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
62 Op 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Compounds:
1 AcInOp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 AcEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 AIcEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 AEt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 AtIEtO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 AtE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 ApItEOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 ApEc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 IpEcOn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 AcIn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 AcOp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 AInOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 AIcEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 AEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 AtIcEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 AtIEt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 AtEtO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 ApIEtOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 ApItE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 ApEOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 ItEOn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 IpEc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 EcOn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 AInOp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 AIcOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 AEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0