Original writings by Avi Sion on the theory and practice of inductive and deductive LOGIC The Logician … Philosophy, Epistemology, Phenomenology, Aetiology, Psychology, Meditation …

The Logician

Search

General Sitemap

Collected Abstracts

Contact

BOOKSHOP

FUTURE LOGIC

APPENDIX 1:

On Factorial Analysis (Open Systems Analysis).

The table below is an appendix to Chapter 53 (in particular, Section 5).

It shows the factorial analysis of all 195 gross formulas (listed in the column labeled FORMULAS), in terms of the 63 factors (columns F1-F63) in the 'open system' of mixed (natural and temporal) modality.

Due to the size of the table, it is here split into three segments.

• The first segment concerns factors F1-F21;

• the second,  factors F22-F42;

• the third,  factors F43-F63.

Thus, to see the factors allowed for by any gross formula, it is necessary to look along the row corresponding to it in all three segments.

The factors of any gross formula are signaled by a '1' in the cell concerned (where row and column cross); if a cell is blank, it means that the factor heading the column is not a possible outcome of the gross formula heading the row.

The gross formulas are first sorted into elements and compounds. Then the 20 elementary (plural) propositions and the remaining 175 compound formulas (consisting of two or more elements) are, respectively, sorted according to the number of factors they each have (indicated in the column labeled NF).

The factors of the 20 elements are already known (see ch. 52). The factors of the remaining 175 gross formulas (compounds), follow automatically from them. We need only do the following:

1.    Split the compound into its component elements (which number two, three or four, as the case may be).

2.    Look and see which, if any, of these elements have the factor concerned.

3.    If all have it, the compound in question also has it; otherwise, not.

(For example, the compound AcInOp has factor F8, because its three component elements Ac, In and Op, have only this one factor F8 in common.)

The value of this table is, as we have seen (ch. 54-59), to guide us in generalization and particularization, by indicating successive inductive preferences. In some cases (the eleven cases with a single factor, to be specific), it even indicates deductive inferences.

APPENDIX TO CHAPTER 53 - FIRST SEGMENT - FACTORS F1-F21.

NF = Number of Factors.

 NF FORMULAS F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 Elements: 1 An 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 En 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 Ac 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 Ec 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 7 A 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 7 E 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 15 At 1 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 15 Et 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1 31 Ap 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 31 Ep 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 32 In 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 32 On 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 48 Ic 1 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 48 Oc 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 0 56 I 1 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 56 O 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 60 It 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 60 Ot 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 62 Ip 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 62 Op 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Compounds: 1 AcInOp 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 AcEp 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 AIcEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 AEt 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 AtIEtO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 AtE 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ApItEOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 ApEc 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 IpEcOn 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 AcIn 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 AcOp 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 AInOt 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 AIcEp 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 AEpOt 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 AtIcEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 AtIEt 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 AtEtO 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 ApIEtOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 ApItE 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 ApEOc 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 ItEOn 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 IpEc 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 EcOn 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 3 AInOp 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 3 AIcOt 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 3 AEp 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 AtIcEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 3 AtIEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 3 AtEt 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 ApIEtO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 ApItEtOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 3 ApE 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3 ItEOc 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 3 IpEOn 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 4 AIn 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 4 AOt 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 4 AtInO 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 4 AtIcEp 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 4 AtEpO 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 4 ApIcEpOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 4 ApIEt 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 4 ApEtOc 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 4 IEtOn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 4 ItE 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 4 EOn 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 5 AIcOp 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 5 AtIEpOt 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 5 ApItEtO 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 5 IpEOc 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 6 AIc 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 6 AOp 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 6 AtInOt 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 6 AtIcO 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 6 AtIEp 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 6 AtEpOt 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 6 ApIcEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 6 ApIEpOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 6 ApItEt 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 6 ApEtO 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 6 IEtOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 6 ItEtOn 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 6 IpE 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 6 EOc 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 7 AtInOp 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 7 AtIO 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 7 AtEp 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 7 ApIcEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 7 ApItEpOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 7 ApEt 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 7 IEtO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 7 IpEtOn 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 8 AtIn 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 8 AtO 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 8 ApInOc 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 8 ApIcEp 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 8 ApEpOc 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 8 IcEpOn 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 8 IEt 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 8 EtOn 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 9 AtIcOt 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 9 ApIEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 9 ItEtOc 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 11 AtIcOp 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 11 AtIOt 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 11 ApIEpOt 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 11 ApItEpO 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 11 ItEtO 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 11 IpEtOc 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 12 AtIc 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 12 AtOt 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 12 ApInO 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 12 ApIcOc 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 12 ApIEp 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 12 ApEpO 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 12 IcEpOc 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 12 IEpOn 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 12 ItEt 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 12 EtOc 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 13 AtIOp 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 13 ApItEpOt 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 13 IpEtO 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1 14 AtI 1 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 14 AtOp 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 14 ApInOt 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 14 ApIOc 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 14 ApItEp 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 14 ApEpOt 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 14 IcEpO 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 14 ItEpOn 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 14 IpEt 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1 14 EtO 0 1 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1 15 ApInOp 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 15 ApItOc 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 15 ApEp 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 15 IcEpOt 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 15 IpEpOn 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 16 ApIn 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 16 ApOc 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 16 InOn 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 IcEp 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 16 EpOn 0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 18 ApIcO 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 18 IEpOc 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 21 ApIcOt 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 0 21 ApIO 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 21 IEpO 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 21 ItEpOc 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 23 ApIcOp 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 23 ApItO 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 23 IEpOt 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 23 IpEpOc 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 24 ApIc 1 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 24 ApO 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 24 InOc 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 24 IcOn 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 24 IEp 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 24 EpOc 0 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 25 ApIOt 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 0 1 1 1 25 ItEpO 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 0 1 1 1 1 27 ApIOp 0 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 27 ApItOt 0 0 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 27 ItEpOt 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 27 IpEpO 0 0 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 1 1 28 ApI 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 28 ApOt 0 0 0 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 28 InO 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 28 IOn 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 28 ItEp 0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 28 EpO 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 1 1 29 ApItOp 0 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 29 IpEpOt 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 30 ApIt 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 30 ApOp 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 30 InOt 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 30 ItOn 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 30 IpEp 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 30 EpOt 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 31 InOp 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 31 IpOn 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 36 IcOc 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 42 IcO 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 0 42 IOc 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 45 IcOt 0 0 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 0 0 45 ItOc 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 47 IcOp 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 47 IpOc 0 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 0 49 IO 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 53 IOt 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 1 1 53 ItO 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 55 IOp 0 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 55 IpO 0 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 57 ItOt 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 59 ItOp 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 59 IpOt 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 61 IpOp 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CONTINUED IN NEXT SEGMENT

APPENDIX TO CHAPTER 53 - SECOND SEGMENT - FACTORS F22-F42.

NF = Number of Factors.

 NF FORMULAS F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32 F33 F34 F35 F36 F37 F38 F39 F40 F41 F42 Elements: 1 An 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 En 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 Ac 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 Ec 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 A 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 E 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 15 At 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 15 Et 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 31 Ap 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 31 Ep 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 32 In 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 32 On 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 48 Ic 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 48 Oc 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1 56 I 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 56 O 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 60 It 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 60 Ot 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 62 Ip 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 62 Op 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Compounds: 1 AcInOp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 AcEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 AIcEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 AEt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 AtIEtO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 AtE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ApItEOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ApEc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 IpEcOn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 AcIn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 AcOp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 AInOt 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 AIcEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 AEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 AtIcEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 AtIEt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 AtEtO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 ApIEtOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 ApItE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 ApEOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 ItEOn 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 IpEc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 EcOn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 AInOp 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 AIcOt 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 AEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 AtIcEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 AtIEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 AtEt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 ApIEtO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 ApItEtOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 ApE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 ItEOc 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 IpEOn 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 AIn 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 AOt 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 AtInO 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 4 AtIcEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 4 AtEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 4 ApIcEpOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 4 ApIEt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 ApEtOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 IEtOn 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 4 ItE 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 EOn 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 5 AIcOp 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 AtIEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 5 ApItEtO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 5 IpEOc 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 6 AIc 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 AOp 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 AtInOt 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 6 AtIcO 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 6 AtIEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 6 AtEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 6 ApIcEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 6 ApIEpOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 6 ApItEt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 6 ApEtO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 6 IEtOc 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 6 ItEtOn 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 6 IpE 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 6 EOc 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 7 AtInOp 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 7 AtIO 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 7 AtEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 7 ApIcEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 7 ApItEpOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 7 ApEt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 7 IEtO 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 7 IpEtOn 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 8 AtIn 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 8 AtO 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 8 ApInOc 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 8 ApIcEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 8 ApEpOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 8 IcEpOn 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 8 IEt 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 8 EtOn 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 9 AtIcOt 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 9 ApIEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 9 ItEtOc 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 11 AtIcOp 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 11 AtIOt 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 11 ApIEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 11 ApItEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 11 ItEtO 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 11 IpEtOc 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 12 AtIc 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 12 AtOt 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 12 ApInO 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 12 ApIcOc 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 12 ApIEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 12 ApEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 12 IcEpOc 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 12 IEpOn 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 12 ItEt 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 12 EtOc 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 13 AtIOp 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 13 ApItEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 13 IpEtO 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 14 AtI 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 14 AtOp 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 14 ApInOt 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 14 ApIOc 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 14 ApItEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 14 ApEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 14 IcEpO 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 14 ItEpOn 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 14 IpEt 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 14 EtO 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 15 ApInOp 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 15 ApItOc 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 15 ApEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 15 IcEpOt 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 15 IpEpOn 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 16 ApIn 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 16 ApOc 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 0 16 InOn 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16 IcEp 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 16 EpOn 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 18 ApIcO 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 0 0 18 IEpOc 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0 21 ApIcOt 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 21 ApIO 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0 21 IEpO 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 21 ItEpOc 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 23 ApIcOp 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 23 ApItO 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0 23 IEpOt 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 23 IpEpOc 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 24 ApIc 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 24 ApO 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 0 24 InOc 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 24 IcOn 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 24 IEp 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 24 EpOc 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 25 ApIOt 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 25 ItEpO 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 27 ApIOp 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 27 ApItOt 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 27 ItEpOt 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 27 IpEpO 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 28 ApI 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 28 ApOt 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 28 InO 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 28 IOn 1 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 28 ItEp 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 28 EpO 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 29 ApItOp 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 29 IpEpOt 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 30 ApIt 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 30 ApOp 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 30 InOt 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 30 ItOn 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 30 IpEp 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 30 EpOt 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 31 InOp 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 31 IpOn 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 36 IcOc 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 42 IcO 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1 1 1 0 1 42 IOc 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 45 IcOt 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 45 ItOc 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1 47 IcOp 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 47 IpOc 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1 49 IO 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 53 IOt 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 53 ItO 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 55 IOp 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 55 IpO 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 57 ItOt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 59 ItOp 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 59 IpOt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 61 IpOp 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

CONTINUED IN NEXT SEGMENT

APPENDIX TO CHAPTER 53 - THIRD SEGMENT - FACTORS F43-F63.

NF = Number of Factors.

 NF FORMULAS F43 F44 F45 F46 F47 F48 F49 F50 F51 F52 F53 F54 F55 F56 F57 F58 F59 F60 F61 F62 F63 Elements: 1 An 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 En 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 Ac 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 Ec 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 At 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 15 Et 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 31 Ap 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 0 31 Ep 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 32 In 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 32 On 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 1 48 Ic 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 48 Oc 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 56 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 56 O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 60 It 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 60 Ot 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 62 Ip 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 62 Op 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Compounds: 1 AcInOp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 AcEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 AIcEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 AEt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 AtIEtO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 AtE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ApItEOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ApEc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 IpEcOn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 AcIn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 AcOp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 AInOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 AIcEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 AEpOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 AtIcEpO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 AtIEt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 AtEtO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 ApIEtOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 ApItE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 ApEOc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 ItEOn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 IpEc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 EcOn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 AInOp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 AIcOt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 AEp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0